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1. Introduction and summary

The last two years have seen the development of new and surprising techniques for perform-

ing perturbative calculations in gauge theories. Following the seminal paper by Witten [1]

(drawing on earlier insights by Nair [2]), quantifying and generalizing the simplicity of some

tree level amplitudes [3], the initial efforts have been focused on the relation to twistor space

(for a review see [4]). These investigations resulted in a beautiful effective Feynman dia-

gram technique [5], the so-called MHV diagrams or CSW rules, which can be applied to

calculations of tree level [6], one-loop [7] amplitudes and amplitudes with external massive

sources [8]. Recently it has been extended to gravity amplitudes as well [9].

Though the CSW diagrammatic method proved much more efficient in calculating

amplitudes than the traditional method of Feynman diagrams, they still have the same

flavor, and it turns out there exists an even more efficient method, that of the on-shell
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recursion relation. This method was suggested in [10] (see also [12]), and was proven

by [11]. It seems applicable to calculations of tree level amplitude (or more generally

rational functions) in a wide range of theories, and has the flavor of the analytic S-matrix

theory, in that it does not make use of off-shell structures. As such it seems like a genuinely

new way of performing calculations in perturbative quantum field theories.

The recursion relations are reviewed in section 2 below, together with other background

material. They have been utilized to calculate tree level amplitudes in gauge theories [13],

gravity [14], amplitudes including massive sources [15 – 17] and rational functions appearing

in one-loop amplitudes [18]. In all these cases the results obtained are either new, or are a

more compact form of previously calculated results. The relation to the CSW method was

discussed recently in [19].

A more challenging task, and one of relevance to upcoming experiments at the LHC,

is the calculation of one-loop amplitudes. The main ingredient used in calculating one loop

amplitude is that of unitarity: the multi-valued part of the loop amplitude is determined

by the tree level results (see for example [20, 21]). The compactness of the results for the

tree level amplitudes is extremely useful when they are used as input for the calculation of

one-loop amplitudes.

The method of generalized unitarity is one of the most efficient general methods of

using the knowledge of tree level amplitudes in calculating the one-loop amplitudes. It

has been discussed recently in [22, 23]. In particular then discussion in [22] has concen-

trated on cut-constructible amplitudes (in the sense of [24]). The more general amplitude

has rational pieces, which can sometimes be determined separately using recursion rela-

tions [25].

However, as explained in [23], a systematic method to obtain the complete amplitude,

including any rational parts, is using generalized unitarity in D-dimensions. In continuing

away from four dimensions, in dimensional regularization, the rational pieces acquire cuts

as well, and therefore can be constructed using generalized unitarity. The form of the

one-loop amplitude thus constructed is expected to be compact, reflecting the simplicity

of their building blocks, the tree level diagrams.

Motivated by this line of development, we calculate below all the tree level ampli-

tudes needed for calculating one-loop amplitudes with up to five partons. These tree level

amplitudes differ from the ones previously calculated in that some of the external legs

are continued to D-dimensions. The one loop amplitudes with 5 partons were previously

calculated in [26], and we can check the generalized unitarity method against those ex-

plicit results. Calculations of one loop amplitudes in QCD, with up to six partons, are in

progress [27].

The outline of this paper is as follows: in section 2 we motivate the set of tree level

amplitudes constructed here, as the building blocks for the aforementioned one-loop am-

plitudes. The method we use is the extension of the BCF recursion relations, and we

explain the new issues arising when including D-dimensional scalar and fermions. In

section 4 we exemplify the method by calculating the four point amplitudes in detail.

Section A is devoted to calculations of the five point amplitudes and some checks on

them.
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2. Preliminaries

2.1 Notations

A massless momentum in four dimension can be written as a product of two (bosonic)

spinors which we denote by λα and λ̃α̇, so that pαα̇ = σµ
αα̇pµ = λαλ̃α̇, where σµ = (1, ~σ),

and ~σ are the Pauli matrices. We also denote alternatively λα = |λ〉 and λ̃α̇ = [λ|, so that

p = |λ〉[λ|. In the case of several momenta, we also shorten |λi〉 and [λi| to |i〉 and [i|
respectively.

For four dimensional fermions we denote by u±(k) two of the positive energy solutions

of the massless Dirac equation k/u±(k) = 0 of helicities ±1
2 . These solutions are denoted

u+(k) = |λ〉 = λα and u−(k) = |λ] = λα̇, and they are eigenspinors of γ5 with eigenvalues

∓ respectively.

The internal products of these spinors are defined as

〈ij〉 = ū−(ki)u+(kj) [ij] = ū+(ki)u−(kj) (2.1)

which also defines the dual (bra) of each spinor (ket). With this notations |i] = λα̇
i and

[i| = (λi)α̇ are positive chirality spinors of opposite (∓) helicities, whereas |i〉 = (λi)α and

〈i| = λα
i are negative chirality spinors of opposite (±) helicities (note that the internal

products are then Lorentz scalars). These consist of the four positive energy solutions of

the massless Dirac equation. One has the following identities

|i〉[i| = ω+ ki/ |i]〈i| = ω− ki/ (2.2)

where ω± = 1
2(1 ± γ5) are projections onto the positive or negative chirality subspaces.

Wave-functions for external gluons can be written in this basis as bi-spinors ε±αα̇

ε+(k) =
|q〉[k|√
2〈qk〉

ε−(k) = − |k〉[q|√
2[qk]

, (2.3)

where q is an arbitrary reference momentum, changing it amounts to a gauge transformation

on the gluon polarization vector. Similar expression hold for the conjugate part of the

polarization (ε±)α̇α. Working with ε±αα̇ amounts to concentrating on a negative helicity

Weyl spinor, which does not mix with the positive helicity one in a purely massless theory.

In performing helicity amplitude calculations, it is customary to include the wave-

functions for internal fermions or gluons in the interaction vertices rather than in the

propagator. Therefore the propagator is always the scalar propagator 1
p2 , and numerators

which usually accompany fermion propagators come about from the two interaction vertices

connected by the given propagator.1

For other conventions and notation used in helicity amplitude calculations, we refer

the reader to the review [21].

1For fermions in a complex representation of the gauge group there is a distinction between fermion

and anti-fermion. As the formalism treats them uniformly, one has to add by hand a minus sign for each

anti-fermion line.
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2.2 One-loop amplitudes with quarks and gluons

The tree level amplitudes calculated here are to be used as basic building blocks in evaluat-

ing one-loop diagrams in pure QCD, with quark-antiquark pair, and a number of external

gluons. We briefly describe here this calculation, using generalized unitarity in D = 4− 2ε

dimension, leaving the details to future work [27]. This serves as a motivation for the

particular set of tree level amplitudes we evaluate in this paper.

We will concentrate on color-ordered (or partial) amplitudes, stripping the color indices

off the external legs. We will therefore not distinguish between various matter representa-

tions.2 For the purposes of QCD, the fermions are in the fundamental representation, and

discussion of the color ordered amplitudes in this context can be found e.g in [28].

Another standard tool is the supersymmetric decomposition of amplitudes. The one-

loop amplitudes are easier to calculate if a complete supersymmetric multiplet runs in the

loop, as loop amplitudes are cut constructible in those cases [24]. This allows us to trade

some combinations of particles running in the loop for others. For our case, it is sufficient

then to calculate loop amplitudes with scalars and fermions (but no gluons) appearing in

the loop, and (as mentioned above) external quarks and gluons.

The one loop amplitudes can be calculated if we know their singularities in D = 4−2ε

dimensions. This requires knowledge of tree amplitudes with two external legs continues to

D dimensions. Using four dimensional helicity regularization (i.e, where the momenta but

not the polarizations are continued to D dimensions), the D dimensional external momenta

can be thought of as 4 dimensional massive momenta [29]. Inspection of the quadruple and

triple cuts of the aforementioned one-loop amplitudes leads to the following 4 sets of tree

level amplitudes (see figure 1), which will be calculated below:

• Amplitudes including 2 massive (or massless in D = 4 − 2ε dimensions) scalars, and

some number of gluons. These were already calculated in the first reference in [15].

• Amplitudes including 2 massive fermions (which we denote by λ), and some external

gluons. We will label these type-A amplitudes.

• Amplitudes including 2 massive scalars, and massless gluons, accompanied by an

external quark-antiquark pair. We will label these type-B amplitudes.

• Amplitudes including a massive scalar and massive fermions, with external massless

fermion and a few gluons. Those amplitudes will be labeled type-C.

We note that all amplitudes involve two massive legs which are adjacent.

In an effort to use a uniform notation, we will denote the momenta of external3 fermions

by k, external scalars by l, and external gluon by p. In addition, as explained in the next

subsection we need to distinguish between four dimensional momenta (denoted by small

letters) and D-dimensional ones (denoted by capital letters).

2For example, we will not assume the fermions to be adjacent, as could be assumed for quarks, to include

the possibility of external gluinos.
3We will not use uniform notation for intermediate state momenta that are eliminated from the final

result anyhow.
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Figure 1: The relevant tree diagrams, with varying number of gluons, are ordered from left to

right. The massive legs are denoted in boldface lines, solid lines denote fermions, dashed lines

scalars, and wiggly lines gluons.

2.3 D-dimensional fields

We find that in order to use D-dimensional unitarity, we have to use helicity methods

in calculating tree level amplitudes in D-dimensions. In the FDH regularization scheme,

the momentum is continued to D-dimension. Every D-dimensional momentum P can be

decomposed as P = p+µ, where p is the four dimensional component, and µ is a component

in a formal (−2ε)-dimensional orthogonal space.4 Working in mostly minus signature,

P 2 = p2 − µ2, so on shell massless momentum (P 2 = 0) is equivalent to four-dimensional

massive momentum p2 = µ2. Therefore for scalars, working away from 4 dimensions is

equivalent to adding mass to the scalar field.

Each loop momentum integration can be decomposed as dDP
(2π)D = d4p

(2π)4
d(−2ε)µ
(2π)4

, so the

mass µ is always integrated over, and the ε dependence of the amplitude is generated

from the µ dependence of the integrand. Similarly, each vertex is accompanied by a delta

function imposing momentum conservation. As all momenta are now D-dimensional, those

are also D-dimensional delta functions. It is therefore necessary (in general) to regard

the momenta of internal lines as being D-dimensional as well; for tree level amplitudes

they are just given as linear combinations of external momenta, given by imposing all the

momentum conservation constraints.

For internal fermionic lines one always has to sum over the intermediate spinor wave-

functions, so choice of basis is not necessary. We will therefore use the notation |P}, {P |
to refer collectively to these wavefunctions. The sum over the intermediate wavefunction

is performed using the identity

|P}{P | = P/ (2.4)

Note that now P/ has one component (p/) that preserves helicity and one that flips it(µ/).

similarly, in D-dimensions the components p/ and µ/ behave differently with respect to

chirality, {p/, γ5} = 0 whereas [µ/, γ5] = 0.

To mimic the four dimensional helicity methods, we want to utilize helicity-like states

for external fermions, even when they are D-dimensional. As we keep γ5 four dimensional,

we can still use chiral basis which we denote as before by |P 〉 = ω+|P} and |P ] = ω−|P}
(and similarly the conjugates 〈P | and [P |). However the states of definite helicity, |P 〉 and

[P | (or similarly |P ] and 〈P ) now mix with each other. Indeed, the basis vectors |P 〉 and

4We will use the capital letters for D-dimensional momenta, and small letters for their four dimensional

components. The (−2ε) component of all D-dimensional momenta is always ±µ.
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|P ] do not individually satisfy the massless Dirac equation in D-dimensions. That equation

written in terms of these Weyl fermions is,

p/|p〉 + µ/|p] = 0 p/|p] + µ/|p〉 = 0 (2.5)

which is consistent with the mass-shell condition p2 = µ2.

Nevertheless one can assemble the physical amplitudes (with external wave functions

|P} = |P 〉+ |P ]) from the ones calculated here, as helicity violation is limited to insertions

of µ/ in fermion lines. In the course of using the recursion relations we demonstrate this

process, which is also relevant for the calculation of one-loop amplitudes using generalized

unitarity [27]. Whenever one encounters an intermediate D-dimensional fermion, one can

write the numerator of the propagator as

P/ = |P}{P | = (|P 〉 + |P ])(〈P | + [P |) (2.6)

and make use of the partial amplitudes with helicity states, the ones we calculate here.

Note however that the propagator has both helicity preserving and helicity flipping

parts. The helicity preserving parts are the usual propagators, usually drawn as connecting

± states to ∓ states,

|P 〉[P | = ω+ p/ |P ]〈P | = ω− p/ (2.7)

whereas the helicity flipping parts are new, and are the part of the propagator that connects

± states to ± at the other end of the propagator. They arise from the identities

|P 〉〈P | = ω− µ/ |P ][P | = ω+ µ/ . (2.8)

The main advantage of using chiral external states is that one can use the simple

expressions for the gluon polarizations,

ε/+(k) =
1√

2〈qk〉
(|q〉[k| + |k]〈q|) = (ε+)αα̇ + (ε+)α̇α

ε/−(k) = − 1√
2[qk]

(|q]〈k| + |k〉[q|) = (ε−)αα̇ + (ε+)α̇α . (2.9)

This polarization contracts into the fermionic states that accompany the gluon in an inter-

action vertex. In case at least one of these states is a Weyl fermion, one of the terms in the

polarization vanishes (which one depends on the chirality of the fermionic state). Note that

in this case the chirality of the other fermion is determined, even if it is a D-dimensional

(and thus Dirac) fermion.

To summarize the step of the calculations, we will be using the BCF recursion relation

to find an expression for helicity amplitude which is valid in general dimension D (in the

FDH scheme). Subsequent manipulations will depend on which external (and internal) legs

are taken to be D-dimensional, those include translating the helicity states into momenta,

using mass shell conditions and trace identities to simplify the results. We will be very

explicit in calculations of the four point amplitudes in section 3, to demonstrate the issues

involved, and will be less detailed in deriving the five point amplitudes.
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2.4 Recursion relations

To evaluate the tree level amplitudes, we will use the recursion relations first discussed

in [10] and proven in [11]. The proof utilizes the analytic properties of rational functions,

and can be then generalized to massive particles [29], and to purely rational loop ampli-

tudes [7], or to calcualting the rational parts of loop amplitudes [18]. Here we slightly

generalize it for the case of D-dimensional fields. We briefly review the method as needed

for our purposes, highlighting the slight differences arising in our case. We refer the reader

to a more detailed discussion in the original papers.

We will be discussing tree level amplitudes An(p1, ..., pn) of n external on-shell particles,

n− 2 of which are massless in 4 dimensions, or two are taken to be massless in D = 4− 2ε

dimensions (or equivalently massive in 4 dimensions). The recursion relations depend on

choosing two of the external momenta (labeled i, j) and ”marking” them.

Now, define a function A(z) to be the amplitude evaluated at the shifted momenta5

p̂i = pi+zη and p̂j = pj−zη, where η is a null vector orthogonal to both pi, pj . This ensures

the same mass-shell condition applies to the shifted momenta. The shifted momenta are

now null and complex. We will always choose at least one of the marked momenta to be

massless in 4 dimensions, as this simplifies the analysis, and is sufficient for our purposes.6

In case both marked momenta are null, we can write them as product of spinors: pi = λiλ̃i

and pj = λj λ̃j, then η = λjλ̃i. In this case the shift amount to shifting the spinors

λi → λi + zλj and λ̃j → λ̃j − zλ̃i, leaving λ̃i and λj intact. In case that pi is massive and

pj = |j〉[j| is massless, we have η = [j|pi|j〉 (and similarly for i ↔ j).

One then divides the n external momenta to two cyclically ordered groups, which

are labeled L = {pr, ...pi, ..., ps}, R = {ps+1, ...pj , ..., pr−1}. As is indicated the groupings

is such that pi ε L and pj εR, and we will sum over all such groupings. We denote by

p = pr+...+ps, the momentum flowing in the channel between the L,R groups of momenta,7

and p̂ = p + zη is the shifted intermediate momentum. The shift variable z is chosen to

impose the appropriate mass-shell condition on the shifted intermediate momentum p̂. For

uniformity of notation, we impose the same mass-shell condition imposed on external legs:

p̂2 = 0 for purely four dimensional momenta, and p̂2 = µ2 for components of D-dimensional

momentum P̂ .

The BCF recursion relation is then

An(p1, ...pn) =
∑

L,R

∑

h

AL(pr, ...p̂i, ..., ps,−p̂h)
1

p2
AR(p̂−h, ps+1, ..., p̂j , ..., pr−1) . (2.10)

The first sum is over all possible groupings of external momenta, as described above. The

second sum is over all possible intermediate states (depending on the matter content of

5Note that the momentum conservation constraint is unaltered by the shift, so A(z) can be calculated

using perturbation theory.
6For simplicity we take η to be purely four dimensional null momentum, even when D-dimensional

momenta are involved.
7To conform with the notation in this paper, we use p for four dimensional intermediate momentum,

and P for a D-dimensional such momentum.
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the theory), and their helicities8 h. The amplitudes AL, AR depend on shifted momenta

as indicated, and are momentum conserving on-shell amplitudes, albeit with complex mo-

mentum; they include an additional external leg with momentum ±p̂ and the appropriate

helicity ±h. Note also that the momentum p appearing in the propagator is unshifted.

The validity of the recursion relations depends crucially on one technical assumption,

that of the vanishing of the function A(z) as z → ∞. This depends on the helicities of

the marked momenta i, j. In general, the helicities (hi, hj) must chosen so that hi ≥ hj ,

with additional constraints when choosing quarks. In particular, for two gluons we cannot

choose (−,+) [10]; when choosing a gluon and a scalar, positive helicity gluons must be

particle i, while negative helicity gluons must be in the position j [15]. When “marking” a

quark, we cannot also choose an adjacent quark nor an adjacent scalar, and for an adjacent

gluon-quark pair, we have similar rule as above: positive and negative helicity gluons must

be chosen as i and j, respectively [16].

We would now like to resolve the issue of choosing an adjacent gluon and quark (in

that order) with helicities (+,+). While [13] claims that this choice is invalid, we will argue

that it is in fact allowed, as stated in [16]. We will consider A(z) as a sum of Feynman

diagrams where the momenta of the gluon i and adjacent quark j depend on z, and we

will write p̂i = p(z) and p̂j = k(z). When i and j share a vertex, the z-dependance of

those diagrams are completely determined by the corresponding polarization vector and

wavefunction. This class of diagrams contributes the factor [k(z)| (ε+ (p(z))). We recall

that [k(z)| ∝ z and ε+ (p(z)) ∝ 1/z, and so naively this term would not decay for large z.

However, we point out that

[k(z)|ε+ (p(z)) =
[k(z) p]〈q|
〈q p(z)〉 =

[k p]〈q|
〈q p(z)〉 , (2.11)

so this type of diagram does vanish for large values of z. When the particles i and j

are separated by any single (z-dependent) propagator, it is straightforward to check that

similar cancelations occur in the numerator whenever an amplitude poses the threat of

not decaying at large z. Finally, any further lengthening of the “z-path” is harmless since

the only components which grow with z are the scalar-gluon and the triple-gluon vertices.

However, introducing such interactions must be accompanied by the appropriate bosonic

propagator, which then compensates for the z behaviour of the vertex. Thus, we find that

the choice (+,+) is valid for an adjacent gluon-fermion pair (in that order), and similarly

for the choice (−,−).

The new element in our calculation is the continuation away from four dimensions.

However, the continuation to D dimensions does not affect the analytic properties of A(z)

or any of its ingredients, so the the recursion relations remain valid, as do the choices for

(i, j) given in the literature. This fact was already noted in [16]. We point out that the only

qualitatively new ingredient in D dimensions is the helicity-flipping fermionic propagator.

However, this in fact has even better large z behaviour then its standard helicity-preserving

counterpart, since the numerator µ is constant, as opposed to P̂/ which is linear in z.

8For D-dimensional momenta helicity is not well-defined, but one still have to sum over an appropriately

chosen basis, as described above.
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k

i

j

−

+

+−−

Figure 2: Gluon-Fermion primitive vertex, the fermion helicities are drawn, the gluon can have

positive or negative helicity.

To summarize, in the following we will use the BCF recursion relations, always marking

momenta in configurations that are proven to be allowed (that is, when the vanishing of

the boundary term has been established, as described above).

2.5 Primitive vertices

We are interested in calculating tree level diagrams involving massless quarks and gluons,

and massive scalars and fermions. Using the BCF recursion relations [10], we need as basic

building blocks a few cubic amplitudes. We list here the vertices we need for our calculation.

In every case these are simply constructed from the gauge theory action by contraction

with the external wavefunction of the appropriate helicity. In all the cases listed below

we treat all momenta as incoming. All vertices are written for (i, j, k) cyclically ordered,

the expressions for the other cyclic ordering (j, i, k) differ by an overall sign if (i, j) are

fermions.

The primitive vertices we need are:

• gluon-fermion vertex (figure 2):

negative helicity gluon k: 〈ik〉[qj]
[qk]

positive helicity gluon k: − 〈iq〉[kj]
〈qk〉 (2.12)

where q ia an arbitrary reference null vector with q = |q〉[q|. The vertex is independent

of this choice as a consequence of gauge invariance. As each one of the primitive

vertices is gauge invariant, these reference vectors can be chosen independently for

each vertex.

• scalar-fermion vertex (figure 3):

negative helicity external legs: 〈ij〉
positive helicity external legs: −[ij] (2.13)

– 9 –
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i

j

k

Figure 3: Scalar-Fermion primitive vertex, The 3 external legs have the same helicities.

i

j −−
+

−−+

k

Figure 4: Gluon-scalar primitive vertex, the scalar helicities are drawn, the gluon can have positive

or negative helicity.

• scalar-gluon vertex (figure 4):

negative helicity gluon k: − 〈k|j|q]
[qk]

positive helicity gluon k: 〈q|j|k]
〈qk〉 (2.14)

• gluon cubic vertex (figure 5):

MHV vertex: 〈ij〉3

〈jk〉〈ki〉

MHV vertex: [ij]3

[jk][ki] . (2.15)

There are other non-vanishing cubic vertices which we will not need, therefore we will not

present them here. Additionally, for D-dimensional fermions one utilizes the full expression

for the gluon polarization, resulting in additional terms in the interaction vertices which

we write down when we use them below.
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i

j

k

i

j

k+

−−

−−

−−

+

+

Figure 5: Gluon MHV (left) and MHV (right) cubic vertices.

2.6 Checks on the amplitudes

Though the on-shell recursion relations are proven, it is still useful to perform a few checks

on the resulting expression, verifying the various intermediate steps leading to the final

expression. These steps include choosing marked momenta (such that A(z) vanishes as z →
∞), choices of various reference momenta, and straightforward (but sometimes tedious)

algebra.

The first check one can perform is comparison with the result of Feynman diagram

calculation. We have checked our expressions against such calculations for all the four

point amplitudes and some of the five point ones. Typically the recursion relations yield

much more compact expressions for the amplitudes, so the main complication is to reduce

the complex Feynman diagram result to the simpler expression.

Another check we have performed is (some of) the collinear limits of the amplitudes.

The collinear limits are a subset of the multi-particle poles which occur at tree level ampli-

tudes. As the sum of two neighboring momenta becomes on-shell the amplitude factorizes

in the appropriate channel. All our amplitudes have poles at the right location, and in

some cases we have checked explicitly that the residue of the pole is the expected one. We

exemplify the collinear limit in the appendix.

Finally, in the limit µ → 0 all external legs are four dimensional. In some cases the

amplitudes are known in that limit, and we reproduce these results.

3. Four point amplitudes

The amplitudes with four external legs are fairly simple, and can be checked explicitly

against Feynman diagram calculations. We present the details and the results in this

section as a demonstration of the technique and the new issues arising when D-dimensional

fermions and scalars are included.

In addition, all such amplitudes can be seen to have the correct factorization limits.

Indeed, to see the singularity structure it is sufficient to inspect the denominators, we easily

see that they vanish if and only if the sum of two adjacent momenta becomes on-shell (so
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spurious singularities are absent). Checking factorization amount to verifying that the

residue of these poles is the expected one.9

3.1 Type-A amplitudes

These amplitudes have two adjacent massive fermions (of momenta and helicities K+
1 ,K−

2 )

and two adjacent gluons (of momenta p1, p2). We discuss all helicity configurations in turn.

The first case of where the gluons are of opposite helicities is the amplitude A4(K
+
1 ,

K−
2 , p+

1 , p−2 ). We choose the marked momenta to be (i, j) = (p+
1 , p−2 ), as this is one of the

configurations for which there is a general proof of vanishing at infinity. In this case there

is only one possible diagram appearing in the recursion relation, with intermediate fermion

of momentum P = K2 + p1. One gets

A4(K
+
1 ,K−

2 , 1+, 2−) =
〈K2q1〉[1̂ − P̂ ]

〈q11̂〉
1

P 2

〈P̂ 2̂〉[q2K1]

[q22̂]
(3.1)

where q1, q2 are two reference momenta. Note that the helicity of the intermediate states

of momentum P is determined by that of the external momenta.

We choose q1 = 2̂ and q2 = 1̂, and use |1̂] = |1] and |2̂〉 = |2〉, then this becomes

− 〈K22〉[1|p̂/|2〉[1K1 ]

〈21̂〉[12̂]P 2
= −〈K22〉[1|k2/|2〉[1K1 ]

〈21〉[12]P 2
. (3.2)

This result is valid in D-dimensions, with states such as |K2〉 are defined in section 2. Note

also that in this case the relevant part of P appearing in the intermediate state is p, as

[1|µ/|2〉 = 0 by chirality selection rules.

The next step we simplify the result by taking the gluons to be massless in four

dimensions, and the fermion momenta to be massless in D-dimensions (with −2ε component

µ). Then the four dimensional component of P is p = p1 +k2, and the −2ε component is µ.

This result can be shown to be identical to the one obtained from using Feynman graphs

A4(K
+
1 ,K−

2 , 1+, 2−) =
(ε+

1 · k2)[K1| ε−2/|K2〉
(p1 + k2)2 − µ2

(3.3)

A slight variation of the same calculation yields

A4(K
+
1 ,K−

2 , 1−, 2+) = − [K12]〈1K2〉[2|K1/|1〉
P 2〈12〉[21] =

(ε−1 · k1)[K1| ε+
2/|K2〉

(p1 + k2)2 − µ2
(3.4)

where the intermediate momentum P = p1 + K2 in the only diagram contributing to the

recursion relations.

Additionally, for these gluon helicities there could be one helicity flipping amplitudes,

using the same choices of marked and reference momenta one gets:

A4(K
+
1 ,K+

2 , 1+, 2−) =
[K21]〈2 − P̂ 〉

〈21〉
1

P 2

〈P̂2〉[1K1]

[12]
(3.5)

9The term collinear limit is inaccurate when massive momenta are involved, what we really mean is

two-particle factorization limits.

– 12 –



J
H
E
P
0
3
(
2
0
0
6
)
0
0
4

However, using |P 〉〈P | = ω− µ/ and 〈2|µ/|2〉 = 0 this amplitude vanishes.

Now, if the gluons are of the same helicity, we get the amplitudes A4(K1,K2, p
+
1 , p+

2 ),

where the massive momenta K1,K2 are of either chirality. In this case both external states

are of the form |Ki} = |Ki〉 + |Ki]. Choosing the marked momenta to be (i, j) = (p+
1 , p+

2 )

gives one possible intermediate (D-dimensional fermionic) state with P = K2 + p1.

When contracting with the gluon polarizations ε/+ one gets the interaction vertex

1

〈q1̂〉

(

〈P̂ q〉[1̂K2] + [P̂ 1̂]〈qK2〉
)

(3.6)

with a similar expression for the other interaction vertex in the diagram. We get

A4(K1,K2, 1
+, 2+) =

1

〈q11̂〉

(

〈P̂ q1〉[1̂K2] + [P̂ 1̂]〈q1K2〉
) 1

P 2

1

〈q22̂〉

(

〈−P̂ q2〉[2̂K1] + [−P̂ 2̂]〈q2K1〉
)

. (3.7)

There are four terms, corresponding to the four possible helicity assignments for

K1,K2. As the amplitude vanishes in four dimensions, we know that only helicity flip-

ping terms has to be retained. Starting with K−
1 ,K−

2 we get (choosing q1 = 2̂ and q2 = 1̂),

A4(K
−
1 ,K−

2 , 1+, 2+) = − [P̂ 1̂]〈2̂K2〉[P̂ 2̂]〈1̂K1〉
〈21〉〈12〉 (3.8)

using |P ][P | = ω+ µ/ , and the more standard projections gives

− 〈K2|2/ µ/ 1/ |K1〉
〈21〉〈12〉 . (3.9)

As µ/ anti-commutes with 1/ , 2/ , those combine to give (1 + 2)2 − 1/2/ . The last term gives

vanishing contribution (using e.g. [P |2/|K1〉 = 0 by momentum conservation), therefore

A4(K
−
1 ,K−

2 , 1+, 2+) =
[12]

〈12〉
〈K2|µ/|K1〉

(k2 + p1)2 − µ2
. (3.10)

This matches the result quoted in [29]. Similarly for the last helicity configuration one

obtains

A4(K
+
1 ,K+

2 , 1+, 2+) =
[12]

〈12〉
[K2|µ/ |K1]

(k2 + p1)2 − µ2
. (3.11)

3.2 Type-B amplitudes

These amplitudes have two massive scalars (of opposite helicities) with momenta L1, L2,

and two massless fermions of opposite helicities, and momenta k1 = λ1λ̃1 and k2 = λ2λ̃2. As

we are interested always in adjacent massive legs, the only non-vanishing helicity preserving

configurations have cyclic ordering of momenta (k+
1 , k−

2 , L−
1 , L+

2 ) or (k+
1 , k−

2 , L+
1 , L−

2 ). The

helicity violating configuration is (k+
1 , k+

2 , L+
1 , L+

2 ).

For all these configurations we choose the two marked momenta to be (i, j) = (k1, L1).

In this case there are two possible grouping of momenta, or two possible diagrams in the
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recursion relation. In one of them the intermediate momentum is P = k1 + L2, and the

intermediate state is a D-dimensional fermion. In the other diagram the intermediate

momentum is q = k1 + k2, and the intermediate state is a gluon which can be of positive

or negative helicity. The first set of diagrams can lead to helicity flipping via the D-

dimensional internal fermion, whereas the diagrams with an internal gluon only lead to

helicity conserving amplitudes.

The first amplitude A4(k
+
1 , k−

2 , L−
1 , L+

2 ) can be written as a sum of three terms

A4(k
+
1 , k−

2 , L−
1 , L+

2 ) = − [k̂1 − P̂ ]〈P̂ k2〉
P 2

− 〈k2q1〉[k̂1 − q̂]

〈q1 − q̂〉
1

Q2

〈q̂|l2|q2]

[q2q̂]
+

+
〈k2q̂〉[q3k̂1]

[q3q̂]

1

Q2

〈q4|l2|q̂]
〈q4q̂〉

.

The last term vanishes if we choose q3 = k1 (note that 〈k1q̂〉 6= 0). For the middle term we

choose q1 = q2 = k1, the amplitude is then

1

q2

{

[k1|l2|k2〉 +
[k̂1|q̂/l2/k1/|k2〉
〈k1q̂〉[k1q̂]

}

(3.12)

using elementary consideration the numerator can be simplified

[k̂1|q̂/l2/k1/|k2〉 = −2(k1 · k2)[k1|l2/|k2〉 = −2(k1 · q̂)[k1|l2/|k2〉 (3.13)

therefore

A4(k
+
1 , k−

2 , L−
1 , L+

2 ) = [k1|l2/|k2〉
{

1

(k1 + l2)2 − µ2
+

1

(k1 + k2)2

}

(3.14)

which can be easily checked to be the result obtained from Feynman diagrams.

Using similar reasoning, the the other helicity conserving amplitude evaluates to be

A4(k
+
1 , k−

2 , L+
1 , L−

2 ) =
[k1|l2/|k2〉
(k1 + k2)2

. (3.15)

Note the absence of singularity as k1 + L2 becomes on -shell, as there is no appropriate

helicity assignment for the would-be on-shell intermediate state. This result can be easily

checked to be the result of a sum of two Feynman diagrams.

As before, the intermediate state is effectively four dimensional for helicity preserving

external states. We now evaluate the helicity flipping amplitude, for them the only possible

intermediate state is fermionic and its propagator is effectively µ/, which simplifies the

calculation. The primitive vertex coupling scalars to fermions is unmodified, giving:

A4(k
+
1 , k+

2 , L+
1 , L+

2 ) =
[k̂1 − P̂ ][P̂ k2]

P 2
=

−[k1|µ/|k2]

(k1 + l2)2 − µ2
(3.16)

However, for the purpose those type B amplitudes where the “helicity” of the scalars is

flipped are not used as ingredient in the one-loop calculation we are ultimately interested in.

We therefore only consider the case where the two massive scalars have opposite “helicity”.

This is useful because often this eliminates the fermion helicity-flipping terms as well.

– 14 –



J
H
E
P
0
3
(
2
0
0
6
)
0
0
4

3.3 Type-C amplitudes

There are a few helicity configurations relevant here. We will sketch the calculation and give

the results. In all cases we take the fermionic momenta to be k1,K2, the scalar momenta

L and the gluon momentum p.

For A4(k
+
1 ,K+

2 , L+, p+) we choose the marked momenta to be (i, j) = (p+, k+
1 ). There

is one possible grouping of momenta for which the intermediate state is a D-dimensional

scalar of momentum Q = p + L. The recursion relation reads

A4(k
+
1 ,K+

2 , L+, p+) = −〈q|L|p̂]

〈qp̂〉
1

Q2
[k̂1K2] (3.17)

choosing q = k̂1 gives

〈k1|l/|p][K2 k̂1]

〈k1p〉Q2
(3.18)

where we already projected onto the appropriate component of L/,namely l/.

The last step involved calculating [K2k̂1] which will be used repeatedly below. Using

the result

[K2k̂1] =
[p| l/k2/ + µ2|K2]

〈k1|l/|p]
(3.19)

one finally gets

A4(k
+
1 ,K+

2 , L+, p+) =
[p| l/k2/ + µ2|K2]

〈k1p〉 [(p + l)2 − µ2]
. (3.20)

For the amplitude A4(k
+
1 ,K+

2 , L+, p−) we choose the marked momenta (i, j) = (k+
1 ,

p−), resulting in similar calculation (where the helicity of the external gluon is flipped).

The result is

A4(k
+
1 ,K+

2 , L+, p−) =
[k1K2]〈p|l/|k1]

[k1p] [(p + l)2 − µ2]
. (3.21)

Note that for these two amplitudes, where the fermions are adjacent, the intermediate

state is massive scalar and consequently there is no helicity-flipping intermediate state.

For the amplitude A4(k
+
1 , p+,K+

2 , L+) we choose (i, j) = (p+, k+
1 ), therefore the inter-

mediate state is of momentum Q = p + K2, and

A4(k
+
1 , p+,K+

2 , L+) = − [K2p̂]〈q − Q̂〉
〈qp̂〉

1

Q2
[Q̂k̂1] (3.22)

choosing q = k1 gives after some elementary algebra

A4(k
+
1 , p+,K+

2 , L+) =
µ2

〈k1p〉〈pK2〉
. (3.23)

As the intermediate state in this amplitude is D-dimensional fermion, there is a similar

amplitude with opposite helicity for one of the fermions, namely

A4(k
+
1 , p+,K−

2 , L+) =
〈K2q〉[p̂ Q̂]

〈p̂ q〉
1

P 2
[P̂ k̂1] =

〈K2k1〉[p|µ/|k̂1]

〈p k1〉Q2
(3.24)
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after calculating [p|µ/|k̂1] we end up with the amplitude

A4(k
+
1 , p+,K−

2 , L+) =
〈K2k1〉[p|µ/|k1]

〈p k1〉 [(p + k2)2 − µ2]
. (3.25)

Finally for the amplitude A4(k
+
1 , p−,K+

2 , L+) we choose (i, j) = (k+
1 , p−), giving

A4(k
+
1 , p−,K+

2 , L+) = −[k̂1 − P̂ ]
1

P 2

〈P̂ p̂〉[qK2]

[qp̂]
(3.26)

with P = K2 + p, choosing q = k1 gives

A4(k
+
1 , p−,K+

2 , L+) = − [k1K2]

[k1p]

〈p| l/|k1]

(k1 + l)2 − µ2
. (3.27)

Once again, since the intermediate state has helicity flipping part, we could get the

additional amplitude

A4(k
+
1 , p−,K−

2 , L+) = [k̂1 − P̂ ]
1

P 2

〈K2p̂〉[qP̂ ]

[qp̂]
. (3.28)

However, choosing again q = k1, and using [k1|µ/|k1] = 0, this amplitude vanishes.

4. Five point amplitudes

We list below the results of the calculation of the relevant five point amplitudes, and the

checks they satisfy. In all cases the calculation follows the lines of the corresponding four

point amplitude calculation, and we omit the details for brevity.

4.1 Type-A amplitudes

These amplitudes include two adjacent D-dimensional fermions of momenta K1,K2,and

three adjacent gluons of momenta p1, p2, p3. The results are

A5(K
−
1 ,K−

2 , p+
1 , p+

2 , p+
3 ) =

〈K2|µ/|K1〉 〈K2|(k1/ + k2/)|3]
〈K21〉〈12〉〈23〉〈3K1〉[K13]

.

There is no singularity as K1 + K2 becomes null, since no helicity assignment exists for an

intermediate state. The result is symmetric when exchanging (1, 3) and (K1,K2), therefore

there are only two collinear limits to check. We perform these checks in the appendix as a

demonstration.

Note also that the amplitude vanishes in four dimensions (setting µ = 0) as it should,

and therefore only helicity-flipping parts exist. The other possible helicity assignment for

fermions gives

A5(K
+
1 ,K+

2 , p+
1 , p+

2 , p+
3 ) =

[K1|(p3/ + k1/)µ/|2〉 〈K2|(k1/ + k2/)|3]
〈K21〉〈12〉〈23〉〈3K1〉[K13]

.
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The rest of the type A amplitudes are given as sum over two diagrams, one with

internal gluon and one with internal D-dimensional fermion

A5(K
+
1 ,K−

2 , p+
1 , p−2 , p+

3 ) = − 〈K22〉3 〈K12〉[3K1]

〈K21〉〈12〉〈23〉〈3K1〉 [3|(k1/ + k2/)|K2〉

A5(K
−
1 ,K−

2 , p+
1 , p−2 , p+

3 ) = − [13]4 〈K1|µ/|K2〉
[12][23][K1K2]〈K2K1〉 [3|(k1/ + k2/)|K2〉

−

− 〈K22〉〈2K1〉 [3|k1/|2〉[1|µ/|3]
〈21〉(K2 + p1)2 (p2 + p3)2 (K1 + p3)2

A5(K
+
1 ,K+

2 , p+
1 , p−2 , p+

3 ) = − [13]4 [K1|µ/|K2]

[12][23][K1K2]〈K2K1〉 [3|(k1/ + k2/)|K2〉

A5(K
+
1 ,K−

2 , p+
1 , p+

2 , p−3 ) =
〈K23〉2 [K1|(k1/ + k2/)|3〉

〈12〉〈23〉〈K1K2〉 [K1|(k1/ + k2/)|1〉
+

+
µ2[12]〈K23〉[2K1]

〈12〉[23] (K2 + p1)2 (K1 + p3)2

A5(K
+
1 ,K+

2 , p+
1 , p+

2 , p−3 ) =
[12][2K1]

2 [K1|µ/|K2]

〈K21〉[K21][23][K13] [K1|(k2/ + k1/)|1〉

A5(K
+
1 ,K−

2 , p+
1 , p−2 , p−3 ) =

〈1K2〉2 [K1|(k1/ + k2/)|1〉 [K2|(k1/ + k2/)|1〉
〈K21〉〈12〉〈23〉〈K1K2〉[K2K1] [K2|(k1/ + k2/)|3〉

A5(K
+
1 ,K+

2 , p+
1 , p−2 , p−3 ) =

[23] [K22]
2〈K21〉 [K1|µ/|K2]

(p3 + K1)2 (K2 + p1)2 [K2|(k1/ + k2/)|3〉
4.2 Type-B amplitudes

These amplitudes have two massive scalars (of opposite helicities) with momenta L1, L2,

and two massless fermions of momenta k1, k2, and an additional gluon of momentum p. The

helicity flipping part of the fermion propagator are less relevant in this set of calculations,

since fermion helicities are correlated with that of the external scalars. The results are

A5(p
+, L−

1 , L+
2 , k+

1 , k−
2 ) =

〈k2|l1/|p] [k1|l2/|k2〉
〈k2p〉 〈p|l1/|p]

( 〈k2|l1/|p]

[k1|(l2/l1/ + µ2)|p] 〈k1k2〉
+

1

(k1 + L2)2

)

+
µ2[pk1]

3

[k1|(l2/l1/ + µ2)|p] [k2k1] (L1 + L2)2

A5(p
−, L−

1 , L+
2 , k+

1 , k−
2 ) =

( 〈p|l2/|k2]

〈p|(l1/l2/ + µ2)|k1〉 [k1k2]
+

1

(k2 + L2)2

)

×

×
(

[k1|l1/|p〉 [k1|l2/|k2〉 − µ2[12]〈2p〉
〈p|l1/|p] [p2]

)

+
µ2 〈pk2〉2 〈pk1〉

〈p|(l1/l2/ + µ2)|k2〉 〈k1k2〉 (L1 + L2)2

A5(p
+, L−

1 , L+
2 , k−

1 , k+
2 ) =

〈k2|l1/|p]2 〈k1|l2/|k2]

〈k1k2〉〈k2p〉 〈p|l1/|p] [k1|(l2/l1/ + µ2)|p]

+
µ2 [pk2]

2 [pk1]

[k1k2] [k1|(l2/l1/ + µ2)|p] (L1 + L2)2

A5(p
−, L−

1 , L+
2 , k−

1 , k+
2 ) = − 〈p|l1/|k2]

2 〈k1|l2/|k2]

[k1k2][k2p]〈p|l1/|p] 〈p|(l1/l2/ + µ2)|k1〉
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+
µ2 〈pk1〉3

〈k1k2〉 〈p|(l1/l2/ + µ2)|k1〉 (L1 + L2)2

A5(L
+
1 , p+, L−

2 , k−
1 , k+

2 ) =
〈k2|l1/l2/|k1〉
〈k1p〉〈pk2〉

( 〈k1k2〉
〈k2|l1/l2/|k1〉

+
1

(L1 + L2)2

)

+
µ2 [p|l1/|k2〉2

〈k2|l1/l2/|k1〉 (L1 + L2)2 (L1 + k2)2

A5(L
−
1 , p+, L+

2 , k−
1 , k+

2 ) =
〈k2|l2/l1/|k1〉

〈k1p〉〈pk2〉 (L1 + L2)2

We also find that all amplitude where fermion helicity is flipped are vanishing.

4.3 Type-C amplitudes

These consist of massless fermion of momentum k1, massive fermion of momentum K2,

massive scalar of momentum L and two massless gluons of momenta p1, p2. The results

are:

A5(p
+
1 , p+

2 , k+
1 , L+,K+

2 ) = − µ2

〈K21〉〈12〉〈2k1〉

A5(p
+
1 , p+

2 , k+
1 , L+,K−

2 ) =
〈K2|k1/µ/(l/ + k/2)|K2〉

〈K21〉〈12〉〈2k1〉(k1 + L)2

A5(p
+
1 , p−2 , k+

1 , L+,K+
2 ) = − 〈2K2〉[k1|l/|2〉2

〈K21〉〈12〉 [k1 |(l/ + k2/)|K2〉 (k1 + L)2

− µ2[k11]
3

[12][2k1] [k1|(l/ + k2/)|K2〉 (k1 + L)2

A5(p
+
1 , p−2 , k+

1 , L+,K−
2 ) =

〈K22〉2[1|µ/|k1]〈2|l/|k1]

〈K21〉〈12〉[k1|l/|K2〉[K21](k1 + L)2

+
〈K2|(l/ + k2/)|1][1|µ/|k1 ][1k1]

2

[K21][12][2k1 ][k1|(l/ + k2/)|K2〉(K2 + L)2

A5(p
−
1 , p+

2 , k+
1 , L+,K+

2 ) =
〈1k1〉〈1|l/ + k2/|K2]

2

〈12〉〈2k1〉 〈k1|(l/ + k2/)|K2] (K2 + L)2

− µ2[K22]
3

[12][K21] [K2|(l/ + k2/)|k1〉 (k1 + L)2

A5(p
−
1 , p+

2 , k+
1 , L+,K−

2 ) =
〈K1|l/|2][2|µ/|k1 ][K22]

[K2|(l/ + k2/)|k1〉[K21][12](k1 + L)2

A5(p
−
1 , p−2 , k+

1 , L+,K+
2 ) =

[K2k1] [k1|l/µ/ + (k1 + L)2|K2]

[12][K21][2k1] (k1 + L)2

A5(p
+
1 , k+

1 , p+
2 , L+,K+

2 ) = − µ2〈k1|l/|2]
〈K21〉〈1k1〉〈k12〉〈2|l/|2]

A5(p
+
1 , k+

1 , p+
2 , L+,K−

2 ) = − 〈K2k1〉[1|µ/(k2/l/ + µ2)|2]
〈K21〉〈1k1〉〈k12〉〈2|l/|2][1K2 ]

A5(p
+
1 , k+

1 , p−2 , L+,K+
2 ) =

〈2K2〉 [K2|l/|2〉[K2|l/ + k2/|2〉
〈1k1〉 〈2|(l/k2/ + µ2)|1〉 (K2 + L)2

+
µ2〈2|l/|k1]

2

[k12]〈K21〉 〈2|l/|2] 〈2|(l/K2/ + µ2)|1〉
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A5(p
+
1 , k+

1 , p−2 , L+,K−
2 ) =

〈K2|((k2/ + 1/)l/ + µ2)|2〉[1|µ/|k1]〈2|l/|k1]

〈1|(k2/l/ + µ2)|2〉〈1K2〉[k21][k12]〈2|l/|2]

A5(p
−
1 , k+

1 , p+
2 , L+,K+

2 ) =
[2|l/(k1/ + 2/)|K2]

2

[K21]〈k12〉〈2|l/|2][1|(k2/l/ + µ2)|2]

+
[k12]

2[2|(l/k2/ + µ2)|K2]

[1k1][2|(l/k2/ + µ2)|1](K2 + L)2

A5(p
−
1 , k+

1 , p−2 , L+,K+
2 ) =

[K2k1]
2〈2|l/|k1]

[K21][1k1][k12]〈2|l/|2]

A5(k
+
1 , p+

1 , p+
2 , L+,K+

2 ) =
[2|(l/k2/ + µ2)|k1]〈k1|k2/|K2]

〈k11〉〈12〉〈2|l/|2][(K2 + k1)2 − µ2]

A5(k
+
1 , p+

1 , p+
2 , L+,K−

2 ) =
〈1|l/|2]〈K2k1〉[2|(l/k2/ + µ2)|k1]

〈k11〉〈12〉〈2|l/|2][2|(l/k2/ + µ2)|K2]〈K21〉

A5(k
+
1 , p+

1 , p−2 , L+,K+
2 ) =

〈k12〉[K2|(l/ + k2/)|2〉〈2|l/|K2 ]〈K22〉
〈k11〉〈12〉〈2|(l/k2/ + µ2)|k1〉(K2 + L)2

+
〈k1|k2/|K2][k11]〈2|l/|1]2

[12][2|l/|2〉〈k1 |(k2/l/ + µ2)|2〉(k1 + K2)2

A5(k
+
1 , p+

1 , p−2 , L+,K−
2 ) =

〈K2k1〉[1|µ/|k1]〈2|l/|1]3
[K21][12][2|l/|2〉〈2|l/(1/ + 2/)|K2〉〈2|(l/k2/ + µ2)|k1〉

A5(k
+
1 , p−1 , p+

2 , L+,K+
2 ) =

〈1|l/|2]2 [k1K2]
2〈1K2〉

〈12〉〈2|l/|2][k1 |(k2/l/ + µ2)|2][(k1 + K2)2 − µ2]

+
[2|(l/k2/ + µ2)|K2][2k1]

3

[k11][12][2|(l/k2/ + µ2)|k1](K2 + L)2

A5(k
+
1 , p−1 , p+

2 , L+,K−
2 ) =

〈K2|(k2/ + l/)|2][2|µ/|k1 ][2k1]
2

[k11][12][2|l/k2/ + µ2|k1](K2 + L)2

A5(k
+
1 , p+

1 , p+
2 , L+,K+

2 ) =
[k1K2]

2〈2|l/(1/ + 2/)|K2〉
[k11][12][2|l/|2〉[(k1 + K2)2 − µ2]

To summarize, we have applied the BCF recursion relations to amplitudes which in-

volve D-dimensional fermions and scalars. These D-dimensional particles behave in most

respects as their massive counterparts in four dimensions. We have used this formalism

to obtain four and five point amplitudes where two of the particles have been continued

away from four dimensions and the remaining particles are (on-shell) gluons and massless

fermions. Our results posses expected factorization properties and have passed other con-

sistency checks, as outlined in section 2.6. The tree-level amplitudes we have computed

here are the building blocks (to be assembled using generalized unitarity in D dimensions)

of the rational (nonsupersymmetric) terms of the one-loop amplitude of two (massless)

fermions and up to three gluons. We leave this task for future work [27].
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A. Collinear limits

Let us discuss the factorization limits of the amplitude

A5(K
−
1 ,K−

2 , p+
1 , p+

2 , p+
3 ) =

〈K2|µ/|K1〉 〈K2|(k1/ + k2/)|3]
〈K21〉〈12〉〈23〉〈3K1〉[K13]

As mentioned in the text, there is no singularity in the channel where K1+K2 becomes

on shell. In addition there is a symmetry of exchanging (1, 3) and (K1,K2). This leaves two

channels to check, when p1+p2 becomes null, or when p3+K1 becomes null in D-dimensions

(so it approaches the mass shell condition (p3 + k1)
2 = µ2 in four dimensions).

For the first limit we denote p = p1 + p2, the amplitude as p becomes light-like factor-

izes to

A5(K
−
1 ,K−

2 , p+
1 , p+

2 , p+
3 ) → A3(p

+
1 , p+

2 ,−p−)
1

p2
A4(p

+, p+
3 ,K−

1 ,K−
2 )

The four point amplitude is of type A, so we get:

A5(K
+
1 ,K−

2 , p+
1 , p+

2 , p+
3 ) → [12]3

[1p][p2]

1

〈12〉[21]
[p3]

〈p3〉
〈K1|µ/|K2〉
(K1 + p3)2

To get to the right form we multiply both numerator and denominator by 〈pK2〉, and use

momentum conservation to eliminate p, for example

[1p]〈p3〉 = [1|p|3〉 = [1|2|3〉 = [12]〈23〉

this results in

A5(K
+
1 ,K−

2 , p+
1 , p+

2 , p+
3 ) → [12]3

[12][12]

1

〈12〉[21]
〈K2|(k1/ + k2/)|3]

〈K21〉〈23〉
〈K1|µ/|K2〉
(K1 + p3)2

which coincides indeed with the factorization limit of the exact expression calculated (gen-

erally there are additional terms in the exact expression which are non-singular in the

limit).

The second factorization limit is for the channel Q = p3 + K1, in that limit

A5(K1,K2, p
+
1 , p+

2 , p+
3 ) → A3(p

+
3 ,K1,−Q)

1

Q2
A4(Q,K2, p

+
1 , p+

2 )

where Q is the momentum of a D-dimensional intermediate fermion. However physical

amplitudes such as A5(K1,K2, p
+
1 , p+

2 , p+
3 ) are to be assembled from their components

such as A5(K
±
1 ,K±

2 , p+
1 , p+

2 , p+
3 ) which do not separately obey factorization constraints.

We therefore did not check these more complicated factorization limits involving massive

intermediate momentum.
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